Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771070

RESUMO

The current study was designed to synthesize, characterize, and screen the molecular and biological activities of different metformin derivatives that possess potent antidiabetic potential with minimal side-effects. Metformin-based derivatives containing the metal complexes Cu II (MCu1-MCu9) and Zn II (MZn1-MZn9) were generated using aromatic aldehydes and ketones in a template process. The novel metal complexes were characterized through elemental analysis, physical state, melting point, physical appearance, Fourier-transform infrared (FTIR) spectroscopy, UV/visible (UV/Vis) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and 13C-NMR spectroscopy. Screening for inhibitory activity against the enzymes α-amylase and α-glucosidase, and molecular simulations performed in Schrödinger were used to assess the synthesized derivatives' biological potential. Met1, Met2, Met3, and Met8 all displayed activities that were on par with the reference in an enzymatic inhibition assay (amylase and glucosidase). The enzyme inhibition assay was corroborated by molecular simulation studies, which also revealed a competitive docking score compared to the gold standard. The Swiss ADME online web server was utilized to compute ADME properties of metformin analogues. Lipinski's rule of five held true across all derivatives, making it possible to determine the percentage of absorption. Metformin derivatives showed significant antidiabetic activities against both targeted enzymes, and the results of this work suggest that these compounds could serve as lead molecules for future study and development.


Assuntos
Complexos de Coordenação , Metformina , Cobre/química , Metformina/farmacologia , Zinco/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases/química
2.
Plants (Basel) ; 9(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560128

RESUMO

Copper (Cu) is an important micronutrient for a plant's normal growth and development. However, excess amount of Cu in the soil causes many severe problems in plants-which ultimately affect crop productivity and yield. Moreover, excess of Cu contents causes oxidative damage in the plant tissues by generating excess of reactive oxygen species (ROS). The present experiment was designed to investigate the phytoextraction potential of Cu, morpho-physiological features and biochemical reaction of jute (Corchorus capsularis L.) seedlings using ethylenediaminetetraacetic acid (EDTA) of 3 mM under different Cu levels (0 (control), 50 and 100 µM) in a hydroponic nutrient solution (Hoagland). Our results showed that elevated Cu rates (50 and 100 µM) in the nutrient solution significantly reduced plant height, fresh and dry biomass, total chlorophyll content and gaseous exchange attributes in C. capsularis seedlings. As the concentration of Cu in the medium increased (50 and 100 µM), the level of malondialdehyde (MDA) and oxidative stress in C. capsularis seedlings also increased, which could have been controlled by antioxidant activity in particular plant cells. In addition, rising Cu concentration in the nutrient solution also increased Cu uptake and accumulation in roots and leaves as well as affected the ultrastructure of chloroplast of C. capsularis seedlings. The addition of EDTA to the nutrient solution significantly alleviated Cu toxicity in C. capsularis seedlings, showing a significantly increase in plant growth and biomass. MDA contents was not significantly increased in EDTA-induced plants, suggesting that this treatment was helpful in capturing ROS and thereby reducing ROS in in C. capsularis seedlings. EDTA modification with Cu, although the bioaccumulation factor in roots and leaves and translocation factor for the leaves of C. capsularis seedlings has significantly increased. These results indicate that C. capsularis has considerable potential to cope with Cu stress and is capable of removing a large quantity of Cu from the Cu-contaminated soil while using EDTA is a useful strategy to increase plant growth and biomass with Cu absorption capabilities.

3.
Molecules ; 25(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102270

RESUMO

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Assuntos
Antiprotozoários/farmacologia , Babesia bovis/efeitos dos fármacos , Babesia microti/efeitos dos fármacos , Babesia/efeitos dos fármacos , Cinnamomum zeylanicum/química , Compostos Fitoquímicos/farmacologia , Theileria/efeitos dos fármacos , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Antiprotozoários/isolamento & purificação , Babesia/crescimento & desenvolvimento , Babesia bovis/crescimento & desenvolvimento , Babesia microti/crescimento & desenvolvimento , Bovinos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Concentração Inibidora 50 , Camundongos , Células NIH 3T3 , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Saponinas/isolamento & purificação , Saponinas/farmacologia , Taninos/isolamento & purificação , Taninos/farmacologia , Terpenos/isolamento & purificação , Terpenos/farmacologia , Theileria/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...